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Abstract 

Tetragonal space groups are classified from the 
geometric-unit view point by considering crystal struc- 
tures as a result of combinations and permutations of 
some basic polyhedral units. There are nine patterns 
among two categories represented by four units packed 
on the (liO) and (100)planes. Category (I)_ consists 
of five types with four units packed on the (110) plane. 
The centers of these units are 0,0,0; 0,0,½; 1 1 ~,~,0 and 

x 1 In that order, the patterns can be represented by ~,~,~. 
ABCD, AA'BB', ABA'B', ABB'A' and AA 'A"A". 
Each letter here represents an independent unit: primes 
are used to indicate one of the following orientation 
relationships: identity, fourfold rotation, mirror plane 
parallel to (110), and mirror plane parallel to (100). 
These units have the shape of tetragonal prisms and 
they stack in the same way as the crystallographic unit 
cells. Category (II) has four types packed on the (100) 

0,~,~, plane and the centers of these units are at 0,0,0; i 1. 
0,0,½ and I 3 0,~,~. In that order, the patterns can be 
represented by A CBD, ABA 'B', AA 'BB' and 
AA'A"A". The ideal polyhedra for category (II) are 
truncated tetragonal prisms or flattened truncated octa- 
hedra depending on the axial ratio c/a. For simplicity, 
these polyhedra are transformed into tetragonal prisms 
so that all geometric units have the same shape. Units 
in category (II) stack in an interlocking fashion, like 
the work of a bricklayer. The overlap displacements 
for the interlocking are in the (001) direction. The 
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symmetries of the geometric units in some space groups 
depend on the choice of origin, but a shift to equivalent 
origins changes neither the packing patterns nor the 
symmetries of the geometric units. 

Introduction 

Plato's hypothesis about the structure of matter is that 
all matter is the result of combinations and per- 
mutations of a few basic polyhedral units. From a 
geometric view point, these polyhedral units are made 
up of atoms, ions, or molecules. Furthermore, a 
polyhedral unit may contain a group of nested 
polyhedra whose vertices are marked by positions of 
symmetry-related atoms. This paper reports the ex- 
ploration along this idea of combinations and per- 
mutations of some basic units for the tetragonal 
system. 

The problem of space filling with polyhedra has 
fascinated many mathematicians and crystallog- 
raphers alike for more than two thousand years 
(Senechal, 1981). For example, Dirichlet (1850) and 
Wigner & Seitz (1933) introduced methods for finding 
the polyhedra enclosing each of the lattice points. These 
polyhedra are called Dirichlet regions (or domains) or 
Wigner-Seitz cells. 

For the cubic crystal system, it has been demon- 
strated that all geometric units have the shape of an 
Archimedean truncated octahedron (Chieh, 1979). The 
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description of any cubic crystal structure can be made 
based on the arrangement of these units, and further 
detail is given as the arrangement of atoms within them. 
Subsequently, this idea is applied to the description of 
crystal structures whose geometric units have 43m 
symmetry (Chieh, 1980) and m3m symmetry (Chieh, 
1982). 

After the publication of privileged origins (Burzlaff 
& Zimmerman, 1980), a revised classification of cubic 
space groups by the arrangement of geometric units 
was given by Chieh, Burzlaff& Zimmermann (1982). 

Bradley & Jones (1933) used cluster to describe the 
?-brass structures; this author recognized that this 
concept is actually derived from the geometric proper- 
ties of space groups. Following our work with 7 brasses 
(Booth, Brandon, Brizard, Chieh & Pearson, 1977), 
this concept was extended to all cubic crystals. Further 
description of crystal structures is done by grouping the 
atoms in the form of polyhedra, a geometric property 
of the point group, within the geometric unit. This same 
method was used by Chabot, Cenzual & Parth6 (1981). 

A few applications of the geometric unit concept 
follow. 1. The arrangement of many space-group 
symmetry elements in geometric units is easy to 
understand. The classification of space groups by this 
method provides an interesting linkage between 
crystallographic point groups and space groups. 2. 
Although the division of a unit cell into geometric units 
is independent of the origin, we can always select points 
of high symmetry to be centers of these units and thus 
allow the description of crystal structures within them 
by nested polyhedra as Chabot et al. (1981)termed it, 
or nested configurations of certain symmetry. 3. An 
arrangement of geometric units is usually common to 
several space groups and thus allows the study of 
correlation among crystal structures, furnishing a mean 
for the consideration of geometric and symmetric 
factors governing their stability. 4. The arrangement of 
geometric units can be described by a few simple easily 
understood and remembered invariant lattice com- 
plexes (Fischer, Burzlaff, HeUner & Donnay, 1973). 5. 
Geometric units are building blocks for crystals as are 
crystallographic unit cells. These blocks are polyhedra, 
which may or may not relate to a molecule. Often, we 
do see a relationship between geometric units and 
molecules as demonstrated in the two previous studies 
(Chieh, 1980, 1982). 6. For very complicated crystal 
structures, the task of describing or memorizing them is 
reduced to a problem, much simpler than other 
methods, of knowing the nesting of the polyhedra in the 
geometric units. 7. The classification of space groups by 
the geometric construction produces a new way for the 
study of systematics of crystal chemistry, and for the 
study of structural relationships. 

Aside from the three pairs of enantiomorphic space 
groups P41, P43; P4z22, P4322; and P412~2, P43212, 
the representation patterns are unique to all other space 

groups in terms of the symmetry of the geometric units 
and orientation relationships, providing a one-to-one 
correspondence between space groups and the patterns. 

Didehlet domains of tetragonal lattices 

The two lattices, P and I, of the tetragonal system have 
the largest number (68) of space groups among the 
seven crystal classes. However, the geometric units and 
their arrangements in the tetragonal system can be 
derived in a manner similar to that of the cubic system, 
for which the Dirichlet domain of the I lattice was 
adopted as the basic geometric unit. Although Koch 
(1972) and Fischer, Koch & Hellner (1971) studied the 
Dirichlet domains, the discussion on the properties of 
the Dirichlet domains has not been widely available. 
These properties are key points for the discussion of 
geometric units; therefore Dirichlet domains for the 
tetragonal I lattice will be discussed before we deal with 
the classification of tetragonal space groups. The shape 
of the Dirichlet region for a P lattice is a tetragonal 
prism. 

The Dirichlet domain or Wigner-Seitz cell for a 
body-centered tetragonal I cell has four shapes depend- 
ing on the axial ratio, c/a. Three of them are shown in 
Fig. 1; the fourth is an Archimedean truncated 
octahedron, a special case when the tetragonal cell is 
metrically cubic. When c is greater than v/2a, the 
polyhedron has the shape of a truncated tetragonal 
prism, Fig. l(a). The top and bottom of the poly- 
hedron consist of four congruent rhomboids. The angle 
subtended by the two opposite rhomboids at the apex is 
2 tan-l(c/v/2a). The angles between adjacent rhom- 
boids are cos-l[ 1/(2r 2 + 1)], where r = c/a. The length 
of the edges for the prism is (c 2 - 2a2)/2c, and the 
distance between the two apexes is obviously c/2. 

For c = x/~a, the Dirichlet domain is a rhombic 
dodecahedron (see Fig. lb), the same as that for a 
cubic F lattice, and many of its properties are listed in 
International Tables for  X-ray Crystallography (1972). 
When c < V/-2a, the Dirichlet domain is a flattened 
truncated octahedron, Fig. 1 (c). 

The packing of the Dirichlet domains on the (1 i0) 
plane corresponding to the three shapes of Fig. 1 are 

(a) (b) (c) 
Fig. 1. Three of the four possible polyhedra for the Dirichlet 

domain of a tetragonal I lattice: (a) when c > v/2a; (b) when 
c = V/-2a; and (c) when c < v~a. 
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shown in Fig. 2. Although Figs. 2(a) and (c) appear to 
be the same when one of them is viewed sideways, they 
represent different polyhedra. Fig. 2(b) represents 
packing on the (100) plane of an F cubic lattice. 
Regardless of the variation in the axial ratio, c/a, there 
is a great similarity in the arrangements of geometric 
units to those of the cubic system (Chieh, 1979). 

Geometric units of  the tetragonal system 

The (150) plane is very useful in showing the packing 
of the geometric units for many tetragonal space 
groups. However, planar packing patterns on the (110) 
and (100) planes are employed, resulting in categories 
(I) and (II) respectively. For (I), the geometric units are 
derived from the Dirichlet domains of the lattice 
complex formed by the Wyckoff point set 4(a), 4(b), or 
4(c) in the space group I4 /mcm (No. 140). This lattice 
complex, designated as Cc by Fischer et al. (1973), is 
primitive and has a cell volume of ¼ that of the original 
unit cell. The Dirichlet domains for these are tetragonal 
prisms with the four faces (+ 1,+ 1,0). The packing of 
these on a ( l i0)  plane is shown in Fig. 3(a), which 
includes all patterns of category (I). 

The geometric units can be derived from the 
Cheshire group (Hirshfeld, 1968) of the space groups in 
category (I). Aside from the hemimorphic space groups 
such as P4, I4m etc., they all have Cheshire group of 
(P4/mmm)vc, where the subscripts vc refer to a unit cell 
with a' = (a - b)/2, b' = (a + b)/2 and e' = e/2. The 
unit cell for the Cheshire group has the same volume as 
the geometric units. 

Geometric units for category (II) can be derived 
from the Dirichlet domains of the lattice complex Fe, 
formed by the Wyckoff sets 8(a) or 8(b) of the space 

group I4~/acd. This is an I lattice with ~ of the volume 
of the original unit cell. Thus the Dirichlet domains are, 
in general, truncated tetragonal prisms or flattened 
truncated octahedra. The packing of these has been 
described in the previous section, but it should be 
pointed out that the (110) plane of the lattice complex 
Fc is the (100) plane of the original cell. In addition, the 
cell constants of the I lattice were given in the previous 
section: for the correct shape of the Dirichlet domain 
the appropriately transformed cell dimensions should 
be used. 

It is desirable for all geometric units in the tetragonal 
system to have the same shape, and this is achieved by 
employing Escher's method of transformation. Many of 
his drawings can be visualized as the transformation 
of plane-covering polygons into lizards, knights, or 
whatever. Instead of the truncated tetragonal prism or 
flattened truncated octahedron, the tetragonal prism 
can be used as the basic geometric unit in filling space. 
When this is done, the resulting pattern looks like the 
work of a bricklayer; however, the relative arrange- 
ment of these units stays the same; the transformation 
of Fig. 2 is given in Fig. 3 (b). Since we are not dealing 
with the crystal structures in terms of the lattice 
complex Fc, but the cell of the original tetragonal cell, 
Fig. 3 is labelled according to the latter. 

At this point, we realize that a similar trans- 
formation can be done for the cubic system, i.e. use 
cubes rather than Archimedean truncated octahedra, 

,_ • . . . . . .  _, 

Ii i , , 

I I 
V -  Crystallographic" I I I 

unit cell 

top view similar to (a) 

Fig. 2. Packing of the Dirichlet domain in the tetragonal system. 
(a) when c > V"2a; (b) when c = V"2a; and (c) when c < v'~a. 
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Fig. 3. Packing patterns of geometric units in the tetragonal system, 
categories (I) (a) and (II) (b). 
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although the latter conform with geometry and are 
aesthetically pleasing. Thus simple tetragonal prisms or 
cubes may be used instead of elaborate polyhedra. 
However, the latter have to be used if one wants to 
employ polyhedra with colored faces to conform with 
point-group symmetry and to study their arrange- 
ments for the derivation of space groups. 

For the cubic system (Chieh, 1979), we constructed 
Dirichlet domains from two point sets which may have 
different site symmetries. The units will then have the 
site symmetries of these point sets. However, once the 
pattern is established, the polyhedra resulting from 
Dirichlet domains can be transformed into some simple 
and convenient forms. In the tetragonal system, all 
geometric units in a space group belong to the same 
point group. Both the cubic and tetragonal systems 
have two categories, but the unit cells are divided into 
two and 16 geometric units for the former, and into 
four and eight units for the latter. 

Classification of tetragonal space groups by geometric 
units 

The use of the Dirichlet domains of the I or of the P 
lattices or of any lattice complex is obviously con- 
venient for the partition of a three-dimensional space. 
For simplicity, and for the purpose of keeping the same 
shape for all geometric units in the tetragonal system, 
and for reasons already given in the previous section, 
the tetragonal prism is adopted as the basic geometric 
unit. 

In the classification of space groups from the 
geometric-unit point of view, the following rules are 
applied. 1. The number of classes should remain as 
few as possible. 2. All geometric units in the crystal 
structure of a space group should have the same 
point-group symmetry, which is one of the crystallo- 
graphic point groups unless this is impossible. As a 
consequence, all equivalent origins are used as centers 
of geometric units. The aspect of equivalent origins can 
be derived from the Cheshire group of space groups 
(Hirshfeld, 1968), and it was further discussed by Koch 
& Fischer (1975). 3. The number of geometric units 
should be as few as possible, i.e. use Wyckoff sets with 
lowest multiplicity as their centers. 4. The centers of the 
geometric unit should coincide with points of high site 
symmetry as far as possible. However, there are a few 
space groups for which another origin could serve 
equally well. 5. Simple planes such as the (100) and 
(110) are considered for the packing patterns. 

The classification of tetragonal space groups is given 
in Table 1. Categories (I) and (II) make use of the 
(li0) and (100) planes, respectively. The (100) plane 
passes through the origin of the next cell along a, 
therefore, the x coordinate is 0 for all centers of 
geometric unit A. There are nine types (see Fig. 3 for a 

summary), one of which contains as many as 19 space 
groups. 

The packing pattern on the (1 i 0) plane for category 
(I), see Fig. 3(a), consists of four geometric units; thus 
there are possibilities of having four, two or one 
independent units. The type with four independent units 
consists of six P-type space groups formed by the 
combination of unit-cell translations and the tetragonal 
point groups. The geometric unit D lies between two A 
units along the body diagonal, whereas the units B and 
C lie between two A's in the [001] and [110] directions 
respectively. Two hemimorphic space groups P4 and 
P4mm,  and two pairs of enantiomorphs are also placed 
in type 1. For the hemimorphic and enantiomorphic 
pairs of space groups, it is easier to handle if we 
combine the A and B (similarly C and D) into a single 
unit. Units with hemimorphic point-group symmetries 
can be divided or combined along the polar axis 
without altering the symmetry. The Cheshire groups for 
these space groups degenerate to equivalences of planar 
groups. 

Permutations of two each of two independent units 
in the four positions on a planar pattern, keeping one 
fixed at the origin, give rise to types 2, 3 and 4. In each 
of these types, there exist subclasses because of 
different symmetry relationships between geometric 
units. In some of the subclasses, there are hemi- 
morphic space groups and enantiomorphic pairs. When 
the site symmetries are ambiguous, four-direction 
designations are used following the convention of 
Fischer et aL (1973). 

The orientation relationships are indicated by super- 
scripts 4, m.., and .m. referring to fourfold rotation, 
mirror plane parallel to (100) and (010) respectively. 
When the mirror plane is parallel to either (100) or 
(010), a single m is used in the superscripts. 

For type 5, all four units are the same, however, 
three of them may have different orientations with 
respect to the one at the origin. This type has the most 
number of subclasses, as seen from Table 1 and Fig. 3. 

Again, there can be four, two or one independent 
units in category (II), the patterns of which also consist 
of four units on a (100) plane as shown in Fig. 3(b). 
This pattern, 

A 

B 
B' 

A 

is not permissible because of periodicity requirements, 
thus only four types instead of five are present in 
category (II). The centers of the four units from the 
bottom upward are 0,0,0; 0,~,~,1 1. 0,0,,~; and 0,~,~,13" 
respectively. It should be noticed, however, that these 
patterns do not stack right on top of each other but in a 
brick-wall fashion, i.e. the view from the [010] is the 
same as that from the [ 100]. 
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Classification of tetragonal space groups by packing pattern of geometric units 

4 1 9  

Type 
no. Pattern 

Space group number 
Space group symbol Type 

Wyckoffpo in t  set, site symmetry  no. Pattern 

Packing pattern based on the (1 i0) plane 

81 
P 4  

A: l(a) 4 
B: l(b) 4 
c: 1(c)~ 
D: l(d),i 

115 
P42m 

A: l(a) 4m2 
B: l(d) 4rn2 
C: l(b) a, m2 
D: 1(c) 4m2 

75 
P4 

AB: l(a)* 4 
CD: l(b)* 4 

76 
P4~ 

AB: O00t 4 I 
11 CD: ~0"{" 41 

83 
P4/m 
1 (a) 4/m 
1 (b) 4/m 
l(c) 4/m 
1 (d) 4/m 
123 
P4/mmm 
1 (a) 4/mmm 
1 (b) 4/mmm 
l(c) 4/mmm 
1 (d) 4/mmm 
99 
P4mm 
l(a)* 4mm 
1 (b)* 4mm 
78 
P43 
000t 43 
110t  43 

1 B D 
A C 

77 
P42 

A: 2(a)* 2 
B: 2(b)* 2 

105 
P42mc 

A: 2(a)* 2ram. 
B: 2(b)* 2mm. 

103 
P4cc 

A: 2(a)* 4 
B: 2(b)* 4 

l l6 
P4c2 

.4: 2(c) ,~ 
B: 2(d),J, 

85 
P4/n 

A: 2(a) z~ 
B: 2(b) 

113 
P2,21 _m 

A: 2(a) 4 
B: 2(b) 

100 
P4bm 

AB: 2(a)* 4 
117 
P462 

A: 2(a) zl 
A: 2(b) ,~ 

87 
I4/m 

A: 2(a) 4/m 
A : 2(b) 4/m 

79 
I4 

AB: 2(a)* 4 
86 
P42/n 

A: 2(a) 4 
B: 2(b) 

137 
P42/nrac 

A: 2(a) 4rn2 
B: 2(b) 2,m2 

84 
P 4 J m  
2(a) 2/m 
2(b) 2/m 
131 
P4/mrac 
2(a) mmm. 
2(b) mmm. 
112 
P42c 
2(e) 
2(f)  3, 

90 
P4212 
2(a) 2.22 
2(b) 2.22 
125 
P4/nbm 
2(a) 422 
2(b) 422 

97 
/422 
2(a) 422 
2(b) 422 
107 
I4mm 
2(a)* 4ram 
94 
P4~212 
2(a) 222 
2(b) 222 

A 4 B 4 
A B 

A.m.B.m. 
A B 

Am..Bm.. 
A B 

B B 4 
A A 4 

B B "m" 
A A "m" 

B B m'" 
A A m.. 

B A 
A B 

B A 4 
A B 4 

89 111 
P422 P42m 
l(a) 422 l(a) 2,2m 
l(b) 422 l(c) ,~2m 
l(e) 422 l(d) 42m 
1 (d) 422 1 (b) 42m 

91 
P4122 
000~" 412 
I 10t  412 

93 
P4222 
2(a) 222 
2(b) 222 
132 
P42/mcra 
2(a) m.mm 
2(c) m.mm 
124 
P4/mcc 
2(b) 4/m 
2(d) 4/m 

95 
P4322 
000"[" 432 
½½0t 432 

101 
P42cm 
2(a)* 2.mm 
2(b)* 2.mm 

127 129 
P4/mbm P4/nmm 
2(a) 4/m 2(a) 42rn 
2(b) 4/m 2(b) 42m 

121 139 
I;12m I4/mmm 
2(a) Z]2m 2(a) 4/mmm 
2(b) 42m 2(a) 4/mmm 

134 136 
P42/nnrn P42/mnm 
2(a) 42m 2(a) rnmm 
2(b) ,~2m 2(b) mmm 

Space group number 
Space group symbol 

Wyckof f  point set, site symmetry  

102 
P42nm 

AB: 2(a)* mm 
114 

B A'm" P'~2~c_ 
A B "m" A: 2(a) 4 

A: 2(a) 4 
104 
P4nc 

AB: 2(a) 4 
118 

B A m.. P4n2 
A Bm'' A: 2(a) 

B: 2(b) 

108 140 
5 A m A 14cm 14/mcm 

A A m A: 2(a) a, 4(c) 4/m 
106 135 

A* A "m. P42bc P42/mb c 
A A "m" A: 4(a)* 2 4(a) 2/m 

138 
Am"A 4 P42/ncm 
A A "m" A: 4(b) 4 

133 
A'm'A 4 P42/m_be 
A A m.. A: 4(d)4 

130 
A m. "A "m' P4/ncc 
A A 4 A: 4(b) 

Packing pattern based on the (100) plane 

82 119 
6 D I4 14m2 

B A: 2(a) a, 2(a) ,~m2 
C B: 2(b) ,~ 2(b) 4m2 

A C: 2(c) 4 2(c) 4m2 
D: 2(d) 4 2(d) 4m2 

120 
Bm'" I4c2 

A m.. A: 4(b) 
B B; 4(e) 

A 

92 96 
P41212 P43212 
000t 41 000~ 4 3 
126 128 
P4/nnc P4/mnc 
2(a) 422 2(a) 4/m 
2(a) 422 2(a) 4/m 

98 141 
/4,22 I4Jamd  
4(a) 222 4(a) 4m2 
4(b) 222 4(b) 4m2 

88 
B 4 I4l/a - 

B A: 4(a) 4 
A 4 B: 4(b) a, 

A 
80 
141 

AB: 4(a)* 2 
122 

B "m" I42d 
B A: 4(a) 

A"" B: 4(b) 4 
A 

109 
I41md 
4(a)* mm 

110 142 
A'm" I4 led 14 Jaed 

A m.. A: 8(a)* 2 8(a) 4 
A 4 

A 

* Singular points (0,0,0; l i • 0,0,½; ~,~,½) for these Wyckoff point "~,~,0, o r  i i 

sets are used as centers of geometric units. The centers of the combined unit, 
AB, are singular points 0,0,¼ for type 1, 3 and 4 and 0,0,~ for type 8. 

t The origin is an arbitrary point on a 41 or 43 axis for these enantio- 
morphic pairs; see text for discussion. 
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The generations of A' from A on a (100) plane in 
type 8 for most space groups are accomplished by a 4, 
at (0,¼,z). As a result, A is rotated by a fourfold axis to 
A' ,  as is B to B'.  There is no simple relationship for 
A and A '  in I3,2d; these two are related to each other by 
diamond glide planes and, therefore, the relationship 
between A and A' is a mirror parallel to (110). 

The number of subclasses for category (II) is 
smaller than that of category (I), possibly due to a 
small number of space groups in (II). 

D i s c u s s i o n  

The tetragonal space groups have been classified by the 
consideration of combinations and permutations of a 
few basic geometric units belonging to some point- 
group symmetries. Like the cubic system (Chieh, 
1979), there is a maximum of four independent units 
for some space groups; unlike the cubic system, planar 
packing patterns of geometric units on (1 i0) and (100) 
are required. It may be argued that the patterns in 
category (II) can be represented by sequences in the 
[011] direction, in which case, they become ABCD,  
ABA'B ' ,  A A ' B B '  and AA'A 'A ' .  Since there are planar 
patterns in the tetragonal system, there is no real 
advantage in using the linear sequence. 

For the hemimorphic space groups, the centers of 
geometric units are not uniquely determined; in many 
cases, we choose to combine two units along the polar 
axis, so that only one singular point, namely 0,0,¼, of 
the Wyckoff set 0,0,z is required for the combined unit. 
Since we want to keep the number of types to a 
minimum, and the combination of units does not 
change their relative packing pattern in types 1, 3, 4, 
and 8, there is no need to create separate classes. 
Besides, two singular points of the same Wyckoff point 
set 2(a) can always be chosen as the centers of two 
geometric units. Thus A and B can still be separate 
units. Both choices result in the same pattern, although 
the sizes of the units would be different. 

The classification follows the same principle used in 
the derivation of Cheshire groups (Hirshfeld, 1968), in 
the discussion of automorphism and normalizer (Koch 
& Fischer, 1975), and in the choice of origins 
(Burzalaff & Zimmermann, 1980). The fact that the 
geometric units have k or k of the volume of the 
tetragonal cell is related to the simple fact that the 
special orbit resulted in a super space group with ¼ or 
of the cell volume (Wondratschek, 1976; Matsumoto & 
Wondratschek, 1979). 

To illustrate the application of geometric units, let us 
look at the crystal structure of Nb78Fe40Sis0, space 
group P42/mcm, a = 23.76, c = 4.959 A (Steinmetz, 
Rogues, Courtois & Protas, 1979). This is a compli- 
cated structure with 198 atoms per unit cell. Because of 
the short c axis, it is convenient to project the unit on to 

a (001) plane as shown in Fig. 4. From Table 1, the 
space group is in type 2; thus one understands that the 
atoms in units A and B must have z < k, i.e. the 
asymmetric unit lies such that 0 < z < ¼. When the 
published atomic coordinates are converted according 
to this scheme, the z coordinates are either 0 or ~k. 
Atoms with z = ~¼ are shared between two A's or two 
B's, whereas atoms with z = 0 form a layer passing 
through the centers of units A and B. For the 
diagramatic display of the structure, one may use a 
graduated sheet with the unit cell and geometric units 
outlined; then the atoms are placed according to the 
coordinates. Since the point-group symmetry of the 
units is m.mm, i.e. vertical and horizontal mirror 
planes in Fig. 4, symmetry-related atoms can be 
generated easily with the help of just a ruler. The 
asymmetric unit is roughly indicated by the area where 
the atoms are labelled. Lists of atoms in the geometric 
units can be given in the order of their distances from 
the center of the unit, but in the present case in the 
order of their distances from the center of the square. 
The original atomic numbering is used. For correct 
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Fig. 4. Geometric units of Nb78Fe40Sis0, a = 23.76, c = 4.959 .~, 
A 4B4 

P4,./mcm, pattern A B " (a) Layer  through center of A and B, (b) 

layer shared between two A's and two B's. Lists of  atoms, with 
original atomic numbering, for units A and B are given in order 
of  their distances from the centers of  the squares; their numbers 
per geometric unit are given under them. 
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stoichiometry, it should be noted that Fe(1) = 
½Fe + ½Si, Fe(3) = ½Fe + ½Nb, and Fe(6) = ~Fe + ~Nb. 

For the three enantiomorphic pairs of space groups 
P41 and/'43, P4122 and P4322, and P41212 and P43212, 
it can be argued that there should be eight or four 
geometric units instead of using two per (unit) cell. 
However, under these circumstances, the geometric 
units will not have an identifiable axis in the [001] 
direction. All space-group symmetry operations have to 
be employed for the description of structures and there 
is no real advantage in applying the concept of the 
geometric unit. 

In order that the geometric unit has a 41 axis, the 
origin was chosen at a 41 axis for space group P412~2, 
whereas International Tables for X-ray Crystallog- 
raphy (1969) chooses the origin at 2~2. 

The symmetries of geometric units in some space 
groups depend on the choice of origin. For example, 
space group P42/mbc has four Wyckoff sets with 
multiplicity four and their site symmetries are 222, 2/m, 
4, and 2/m (= 42/m), respectively. Any one of these 
four can be used as the center of geometric unit A in 
type 5. If 4(b) is used instead of 4(a) as the center, the 
symmetry of the geometric unit is changed from 2/m to 
4. Despite the shift of the origin, the packing pattern of 
the geometric units has not been affected. 

Another property of the geometric representation is 
that the shift to equivalent origin changes neither the 
symmetry of the units nor the packing pattern. In space 
group P4, for example, Wyckoff sites (a), (b), (c) and 
(d) are equivalent origins. The centers of the geometric 
units for the pattern can be any of the following 
combinations: 

B D (b)(d) (d)(b) (a)(c) (c)(a) 

A C (a)(c) (c)(a) (b)(d)(d)(b)" 

They correspond to the four equivalent origins. 
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